Contents

Contents 1
Introduction
What map data is available from Geology Download?
Onshore Geology3
Onshore Geology – Data Formats4
Offshore Geology5
Rock Information5
Groundwater5
What will I learn from this exercise?6
What data do I have?7
Geology data – BGS 1:6250007
Ordnance Survey OpenData raster dataset9
Add geological data in ArcMap10
Apply the BGS Cartographic style 11
Overlaying Geographical Map Data - optional17

Introduction

Geology Download allows users to download British Geological Survey (BGS) map data for se in Geographical Information Software (GIS). Any registered user of Geology Digimap can download multiple map data products for their selected area.

In this exercise you will import and apply a style to small scale geological data in ArcGIS, then overlay geographic map data from Ordnance Survey.

These instructions have been prepared using ArcGIS version 10.1.

What is Geology Download?

Geology Download offers:

- Four categories of map data: Onshore Geology, Offshore Geology, Rock Information and Groundwater.
- DigMapGB British Geological Survey onshore geological mapping in 5 scales the most detailed is at a scale of 1:10000.
- All vector data supplied in Shape file format. MIF/MID format available for selected map data products.

What map data is available from Geology Download?

The map data products available through Geology Download are grouped into four categories: Onshore Geology, Offshore Geology, Rock Information and Groundwater.

The categories can be viewed in Step 2 of the Geology Download screen. A category can be expanded by clicking on the small plus symbol or on any category name.

Click **Info** next to any mapping product for details of scale, available format and a brief introduction to the dataset.

Product	Allowance
Onshore Geology (0 selected)	
Offshore Geology (0 selected)	
Rock Information (0 selected)	
Groundwater (0 selected)	

Onshore Geology

Inshore Geology (0 selected))	
1:10 000 Geology	Info	(0/50) tiles
1:25 000 Geology	Info	(0/30) tiles
1:50 000 Geology	Info	(0/30) tiles
Soil-Parent Material	Info	(0/30) tiles
Superficial Thickness Advanced	Info	No limit
Superficial Thickness Basic	Info	No limit
1:250 000 Geology	Info	No limit
1:625 000 Geology	Info	No limit

The Onshore Geology category contains:

- 1. British Geological Survey's **DiGMapGB** onshore geological mapping of Great Britain at 5 scales:
 - 1:10000 note that this map product does not cover all of Great Britain.
 - 1:25000 note that this map product does not cover all of Great Britain.
 - 1:50000 covers all of GB.
 - 1:250000 covers all of GB.
 - 1:625000 covers all of GB.

Depending on the scale you select, **DigMapGB** has a number of layers, including:

- Bedrock geology
- Superficial deposits
- Mass movement
- Artificial ground
- Linear features
- 2. **Soil Parent Material** this map product details the distribution of physiochemical properties of the weathered and unweathered rock nearest the surface. The data is useful for:
 - mapping of UK soil properties.
 - identifying soils and landscapes sensitive to erosion.
 - developing a better understanding of weathering properties and processes.
- 3. The **Superficial Deposits Thickness Model (SDTM)** is a raster-based dataset designed to demonstrate the variation in thickness of Quaternary-age superficial deposits across Great Britain, derived from borehole information and geological map data. The data comes as an Advanced or Basic Model, with a Distance Buffer layer to indicate the level of confidence in the model. The data is useful for:
 - Civil Engineering
 - Ground Water Modelling
 - Predicting Landslides

Onshore Geology – Data Formats

Map data product	Shape file	MIF/MID	ArcInfo (raster)
1:10000 Geology	Y		
1:25000 Geology	Y		
1:50000 Geology	Y	Y	
1:250000 Geology	Y	Y	
1:625000 Geology	Y	Y	
Soil-Parent Material	Y		
Superficial Thickness Advanced			Y
Superficial Thickness Basic			Y

Offshore Geology							
Geology (0 selected	d)						
1:250 000 Offshore Geology	Info	No limit					

Offshore Geology map data is available at a scale of 1:250000 and covers bedrock geology, fault lines and seabed sediments. Provided in Shapefile format.

Rock Information

Rock Information (0 selected)						
	Lexicon of Named Rock Units	Info	No limit			
	Onshore Borehole Index	Info	No limit			

- 1. The **Lexicon of Named Rock Units** is provided in Excel format and has more than 13,000 entries. It contains information on rock units. Entries include:
 - Rock Unit Name and type.
 - Descriptions of the rock and its boundaries.
 - Details of the rock's age.
- 2. The **Onshore Borehole Index** is provided as a Shape file. The Borehole Index contains:
 - Borehole locations.
 - Borehole names and depths.
 - Borehole ID codes.

Groundwater

8	Froundwater (0 selected)		
	Geological Indicators Of Floo	Info	No limit
	Permeability Indicies	Info	No limit

1. **Geological Indicators of Flooding** provide information on areas where Superficial Deposits show evidence of flooding. Areas are classified as being at high or low risk of flooding.

Permeability Indices. Data based on the DigMapGB 1:50000 scale. The Permeability Index consists of a three-part code representing: Predominant Flow Mechanism, Maximum Permeability and Minimum Permeability.

What will I learn from this exercise?

On completion of this guide you will be able to:

- Identify individual map data files
- Import and view geological vector data to ArcGIS
- Apply a cartographic style to Shapefiles in ArcGIS
- Optional: overlay geographical raster map data from Digimap's Ordnance Survey Collection

What data do I have?

We have provided you with two types of data for use with this guide, in 2 folders:

Geology data - BGS 1:625000

This dataset covers all of Great Britain and is freely available from the British Geological Survey (BGS) website:

http://www.bgs.ac.uk/opengeoscience/downloads.html

You can download this data, and more detailed British Geological Survey data, from Geology Download:

Your data is for the area of Anglesey, as outlined in red on the image below:

You have four Shapefiles; geology lines, bedrock polygons, dykes polygons and superficial polygons:

- 1. gb_625k_v5_fault_geology_lines_CLIP
- 2. gb_625k_v5_bedrock_geology_polygons_CLIP
- 3. gb_625k_v5_dykes_geology_polygons_CLIP
- 4. gb_625k_superficial_geology_polygons_CLIP

Shapefile is a data format that consists of at least 3 types of file of the same name. All of the constituent files must be kept in the same location in order for the Shapefiles to work correctly. **Do not split the files up!**

- 1. SHP-shapefile format; the feature geometry (line, point, polygon, etc)
- 2. **DBF**-attribute format; attribute data stored in dBASE IV format
- 3. SHX-shape index format
- 4. PRJ often a PRJ file is included, which stores information about the projection and spatial coordinate system of its associated Shapefile.
- 2. One AVL file and three LYR files have been provided by the BGS. These are the files used in ArcGIS to apply the BGS cartographic style to the geology layers.

Ordnance Survey OpenData raster dataset

We have also provided some Ordnance Survey geographic data:

- Ordnance Survey data, 1:250000 raster, tile SH, which covers North Wales.
- The image shows the contents of the folder **250000 OS Raster data.**
- The TIF file is your raster map image.
- The TFW file contains the geographic coordinates of your map image. DO NOT DELETE THIS FILE.

Name	Date modified	Туре	Size
🋃 sh	02/11/2012 11:36	TIFF image	3,617 KE
sh.tfw	02/11/2012 11:36	TFW File	1 KE
os_open_conditions	02/11/2012 11:36	Text Document	1 KE
250k_raster_gaz_2012	02/11/2012 11:36	Text Document	1,024 KB

This map data is freely available via the Ordnance Survey OpenData website:

http://www.ordnancesurvey.co.uk/oswebsite/products/os-opendata.html

You can also download the data from Digimap's Ordnance Survey Collection, in the Data Download service:

Add geological data in ArcMap

Shapefiles are compatible with ArcGIS. Let's add and view our geological data.

- 1. Start ArcMap¹:
- 2. Click on the File menu and select Add Data.

3. Navigate to the folder containing your data files. You may have to click the Connect to

Folder button, a yellow folder with a plus sign to see your folder.

- 4. Select all **four geology Shapefiles** and the **three layer files (.lyr)** visible in the dialog box using **CTRL + click**.
- 5. Click Add.

¹ ArcMap is the ArcGIS program that allows you to view and analyse map data.

The name of each file you import to ArcMap will now be visible in the Layers panel on the left. All the layers should open up in a map similar to the one shown below, although your colours may be different.

We will look at the colours next.

Apply the BGS Cartographic style

When the data is first loaded into ArcMap, it will not have the standard BGS colours, i.e. it will look different than it does when viewed in Geology Digimap's Roam service.

We need to tell ArcMap which colours to apply to the dataset based on the BGS cartographic style. We can do this by applying symbology (cartographic) information.

One symbology file (.avl) and three layer files (.lyr) are bundled with your geology data. We will apply the symbology they contain using these steps:

- Right click on the superficial geology layer in the Table of Contents panel.
- 2. Select Properties:

3. Click the

Symbology tab. Click the Import button in the top right corner.

General S	Source	Selection	Display	Symbology	Fields	Definition Que	ry Labels	Joins & Relates	Time	HTML Po
how:		n	بالد ست		na tha i				mont	 ר
Features Single Categorie Quantitie Charts Multiple	symbol es s Attribute	×	Symbol		ng the s		Adva	anced •	npon	
C Aria			nport Syn Import Import Legend fi What d O Cor Jus Jus	mbology t symbology d i symbology d le: lo you want tr nplete symbols t the symbols t the classific	lefinition f lefinition f o import? logy definition	from another lay from an ArcView hition	er in the ma 3 legend fil OK	p or from a layer file le ("avl):	► =:	

- 4. Select to Import Symbology definition from an Arc View 3 legend file (*.avl).
- 5. Click on the **Browse** button.

 Import symbology definition from anoth Import symbology definition from an Anotheration 	er layer in the map or from a layer file
Legend file:	
What do you want to import?	
Complete symbology definition	
 Just the symbols 	
Just the classification	

The .avl file will be in the same folder the geological data², the folder 625000 BGS Shapefiles.

6. Select the **.avl file** corresponding to the **superficial geology** layer you selected in the **Table of Contents** panel. Then click **Open**.

Look in:	🔒 625000 BG	S shape files 🔹 👻	G 🤌 📂 🖽 -	
(Pa)	Name	^	Date modified	Туре
ecent Places	gb_625k_s	uperficial_geology_polygons.avl	05/11/2012 14:04	AVL File
Libraries				
Computer	٠	III		
Network	File name:	gb_625k_superficial_geology_poly	gons 👻 🚺	Open
	Files of type:	ArcView 3 legend file		Cancel

² NOTE: when you download data from Geology Digimap, or the BGS Open Geo Science website, your download includes the required AVL and layer files for applying cartographic styling.

 Ensure the Value
 Fields match, as shown. Then click
 OK.

Import Symbology Matching Dialog	~
Select field(s) from the current layer to match to the field(s) in the imported symbology definition:	used
Value Field	
LEX_ROCK	
]
Value Field	
Value Field	
ОК Са	ncel

 Click Apply then OK at the Layer
 Properties box to update the map.

General	Source	Selection	Displa	y Symbology	Fields	Definition Query	Labels Joir	ns & Relat	tes Tim	e H	TML Popu
how:				togorios usin		a values of one	field		Import		
Feature	es			legones usin	ig uniqu		liciu.		Import		
Catego	ries		Value Heid Color Kamp								
Unic	jue values		_EX_RO	СК		-				•	
- Uniq	jue values,	many									
····· Mate	ch to symp	oisina	vmbol	Value		Label		Count			
Charte	lles		7	call other value		call other valu					
Multiple	e Attribut		_		~~~		C3/	2			
Manapa		~ -		REK-SILT		RRK-SILT		2			
				BSA-SAND		BSA-SAND		2	E .	*	
				CRAG-SAGR		CRAG-SAGR		2			
				CWF-DMTN		CWF-DMTN		2		L	
		-		GSG-SAGR		GSG-SAGR		2		¥	
		¥7 -		LDE-CLAY		LDE-CLAY		2			
	<u> </u>			PEAT-PEAT		PEAT-PEAT		2			
	<u>۲</u>			RMD-SAGR		RMD-SAGR		2	-		
	5									_	
	1 1	A	dd All Va	alues Add V	alues	Remove	Remove Al	Ac	dva <u>n</u> ced	-	

We will style the remaining three layers following the steps above.

 Select the
 Symbology tab, then click the
 Import button in the top right corner.

yer Properties	Par a s man	8 23
General Source Select	on Display Symbology Fields Definition Query Labels Joins & Relates Time	HTML Popup
Show: Features Single symbol Categories Quantities Charts	Draw all features using the same symbol. Import	
	Import Symbology	
	OK Cancel	Apply

Remove the .lyr layers in the Table of Contents panel as follows.

- Right click one of the .lyr files showing in the Table of Contents panel.
- 2. Click **Remove**.
- 3. Repeat steps 24-25 to remove the remaining two .lyr files showing in the Table of Contents panel.

You now have a map that has a similar colour scheme as a printed geological map, which should look similar to the one shown below:

Overlaying Geographical Map Data - optional

In order to view the data with a geographical background we will add the Ordnance Survey 1:250 000 Raster data for the same area as our Anglesey data.

- 1. Click on the File menu in ArcMap and select Add Data.
- 2. Select the folder 250000 OS Raster data
- 3. Double click the sub-folder raster-250k_65252
- 4. Select the sh.tif tile.
- 5. Click Add.
- 6. You may receive this message. Click Yes.

Create pyramids for sh.tif (4000 x 4000)
This raster data source does not have pyramids. Pyramids allow for rapid display at varying resolutions.
Pyramid building may take a few moments. Would you like to create pyramids?
<u>H</u> elp <u>Y</u> es <u>N</u> o <u>C</u> ancel
<u>Use my choice and do not show this dialog in the future.</u>

You should now have a map that looks something similar to the one below. You will notice that the geology totally obscures the view of the geography below it. We need to alter the appearance of the geographical map tile to make it visible below the geology data.

- Click and drag the sh.tif layer above the geology layers in the Table of Contents panel. NOTE: you may have to 'collapse' your layers by clicking on the minus signs in order to see your sh.tif layer.
- 8. Right click on the sh.tif layer in the Table of Contents panel and select Properties.
- 9. Click on the **Display** tab.

Show Map Tips (uses primary display field	n					
	y					
Display raster resolution in table of conte	nts					
Allow interactive display for Effects toolbar Resample during display using:						
untrant.	Orthorectification using ele	vation				
	Constant elevation:	0				
ightness: 0 %	C DEM 😽 st66.tif		-			
ansparency: 60 %	Elevation adjustment					
Display Quality	Z factor:	1				
Coarse Medium Normal	Z offset:	0				
	Geoid:	7				

10.

- 11. Change the **Transparency** to **60%**.
- 12. Click **OK**.

Once you have updated the display of the geographical data you should see the geology through it.

13. **Zoom in** for a closer look. Notice how some of the geology follows the contours. You can experiment with the Transparency level in step 7 to adjust the views for clear analysis.

